Conformations of Saturated Six-Membered-Ring Phosphorus Heterocycles. Chair-Chair Equilibria for Cyclophosphamide, the 5,5-Dimethyl Derivative, and Related 1,3,2-Oxazaphosphorinanes. Relative Conformational Energies of Nitrogen Mustard and Other R₂N Groups Attached to Phosphorus

William N. Setzer, Alan E. Sopchik, and Wesley G. Bentrude*

Contribution from the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112. Received September 4, 1984

Abstract: A series of 5,5-dimethyl-3-R-2-oxo-2-Z-1,3,2-oxazaphosphorinanes (1, R = H, Z = Me₂N; 2, R = H, Z = Et₂N; 3, R = H, Z = i-Pr₂N; 4, R = H, Z = N(CH₂CH₂Cl)₂; 5, R = Ph, Z = Me₂N) has been prepared, and their conformations have been studied by ¹H NMR at 300 MHz. The position of the chair = chair conformational equilibrium (9 = 10) varies with the conformational energy of the group Z in the order i-Pr₂N > (ClCH₂CH₂)₂N > Et₂N > Me₂N. Me₂N is predominantly axial (56-65%) and the other Z groups largely equatorial. In C_6D_6 relative to $Z = Me_2N$, $\Delta\Delta G^{\circ}$ values (kilocalories/mole) at room temperature for the equilibrium in question are estimated at -0.48 (Et₂N), -0.75 [(ClCH₂CH₂)₂N)], and -1.2 (i-Pr₂N). For the series $Z = Me_2N$, $E_{12}N$, and $i-Pr_2N$, a steric effect involving 1,3-synaxial interactions appears operative with R_2N axial. Stereoelectronic factors cannot be totally discounted, however, especially for $Z = (ClCH_2CH_2)_2N$. Dilution and solvent studies show intermolecular H bonding to be a secondary effect for 1-4 favoring the conformer with Z axial at higher solute concentrations. The increase in conformational energy for $Z = i - Pr_2N$ compared to $Z = Me_2N$ is confirmed by comparison of the chair = twist equilibrium for cis-2-(disopropylamino)-2-oxo-5-tert-butyl-1,3,2-oxazaphosphorinane (cis-6) with that of the corresponding 2-dimethylamino compound (cis-7) studied previously. Knowledge of the chair equilibrium for 1 and 3 and chair \rightleftharpoons twist equilibrium for cis-6 and cis-7 permits the chair \rightleftharpoons twist free energy change for the 2-oxo-1,3,2-oxazaphosphorinane ring to be estimated to be only 0.5-0.7 kcal/mol. The destabilizing effect of a phenyl at ring nitrogen N(3) on the conformational energy of axial Me₂N is found by comparison of the chair

⇔ chair conformational equilibria for 1 and 5 ($\Delta\Delta G^{\circ} \cong 1.2 \text{ kcal/mol}$). Analyses of J_{HP} for both the CH₂O and CH₂N groups of cyclophosphamide (8) in C₆D₆ allow its chair \rightleftharpoons chair equilibrium to be determined; $\Delta G^{\circ} = -0.7$ in favor of (CICH₂CH₂)₂N equatorial. Comparison with data from another laboratory taken in CHCl₃ and H₂O shows the equilibrium to be highly solvent sensitive. It is concluded that cyclophosphamide and its cyclic metabolites should be readily able to assume the chair or twist conformation most advantageous to oxidation, ring-opening of the 4-OH derivative, or transport.

Cyclophosphamide (CPA), 8, and certain closely related nitrogen mustards containing the 1,3,2-oxazaphosphorinane ring system currently play a key role in cancer chemotherapy. Metabolic oxidation of CPA introduces an OH at C₄, potentially forming two diastereomers.¹ An important effect of diastereomer

identity on the efficacies of the cis- and trans-4-phenylcyclophosphamides in animal tests was recently found.² In spite of the potential effect of conformation in these six-membered ring systems on oxidative activation, transport properties, and metabolite breakdown to cytotoxic products, no thorough, systematic study of substituent effects on conformation in the simple chair \Rightarrow chair system $9 \Rightarrow 10$ has been made. In particular, the relative effective size (or conformational energy) of (ClCH₂CH₂)₂N compared to other R₂N is completely unknown.

(2) Boyd, V. L.; Zon, G.; Himes, V. L.; Stalick, J. K.; Mighell, A. D.; Secor, H. V. J. Med. Chem. 1980, 23, 372.

The 1,3,2-oxazaphosphorinane system itself if of basic interest relative to the question of the influence on the conformational properties of cyclohexane of replacing ring carbons by various heteroatoms. The 1,3,2-oxazaphosphorinanes have been much less well investigated than have the corresponding 1,3,2-dioxaphosphorinanes.³ Moreover, recent reports have emphasized the special conformational features of the 1,3,2-oxaza rings, including the importance of the nature or R at N(3) on the chair \Rightarrow twist equilibria of certain 1,3,2-oxazaphosphorinanes.4 The preference of the Me₂N for the axial position as in 9 was set forth in a recent X-ray study⁵ of 1. This report also included preliminary ¹H NMR results, suggesting a dominance of 9 over 10 in solution as well. This is in contrast to the very strong equatorial Me_2N preference in 2-oxo-1,3,2-dioxaphosphorinanes.

In the present paper we note the important influence of changing the R substituents on R_2N in 1-4 on the $9 \Rightarrow 10$ equilibrium as well as further support for the axial preference of Me₂N in 1. The likely effect of both steric and stereoelectronic influences on relative effective steric size (relative conformational energies) is seen in the observed order: $i-Pr_2N > (ClCH_2CH_2)_2N > Et_2N > Me_2N$. The remarkable increase in conformational energy of R₂N found in the series 1-3 is confirmed in a study of 6 which is compared to 7, previously investigated. In addition the major influence of R on conformational energies earlier noted for the chair = twist

⁽¹⁾ Two recent reviews by chemists have emphasized both the chemical and pharmacological aspects of cyclophosphamide, its analogues, and related compounds: Zon, G. *Prog. Med. Chem.* 1982, 19, 205. Stec, W. *Organophosphorus Chem.* 1982, 13, 145. See also: Hill, D. L. "A Review of Cyclophosphamide"; Charles C. Spring: Springfield, IL, 1975. Calvin, M. In "Clinical Pharmacology of Anti-Neoplastic Drugs"; Pinedo, H. M., Ed.; Elsevier: Amsterdam, 1978; pp 245-261. Friedman, O. M.; Myles, A.; Calvin, M. Adv. Cancer Chemother, 1979, L. 143. Calvin, M. Adv. Cancer Chemother. 1979, 1, 143.

^{(3) (}a) For a comprehensive review of the conformations of 1,3,2-dioxahosphorinanes, see: Maryanoff, B. E.; Hutchins, R. O.; Maryanoff, C. A. Top. Stereochem. 1979, 11, 187. (b) An earlier review is given in: Verkade, J. G. Phosphorus Sulfur 1976, 2, 251. (4) (a) Bajwa, G. S.; Chandrasekaran, S.; Hargis, J. H.; Sopchik, A. E.; Blatter, D.; Bentrude, W. G. J. Am. Chem. Soc. 1982, 104, 6385. (b) Bajwa, G. S.; Bentrude, W. G.; Panteleo, N. S.; Newton, M. G.; Hargis, J. H. Ibid. 1879, 101, 1602.

⁽⁵⁾ Holmes, R. R.; Day, R. O.; Setzer, W. N.; Sopchik, A. E.; Bentrude, W. G. J. Am. Chem. Soc. 1984, 106, 2353.

Table I. Coupling Constants (in Hz) for 2-Oxo-2-(dimethylamino)-5,5-dimethyl-1,3,2-oxazaphosphorinane (1) at 300 MHz, Ambient Probe Temperature (~25 °C)

solvent	% conca	J_{AB}	$\overline{J_{AP}}$	$J_{\mathtt{BP}}$	$J_{ m CD}$	J_{CP}	J_{DP}	$J_{ m AC}$	$J_{ m BD}$	$J_{ m Me_2N}$	ref
$C_6D_6{}^b$	10	-10.5	8.6	14.5	-12.6	10.0	17.8	<1.0	1.8	10.5	С
C_6D_6	1	-10.8	9.6	13.6	-12.6	d	16.8	<1.0	1.8	10.7	c
CDCl ₃	10	-11.0	9.3	13.9	-12.7	12.0	16.2	<1.0	1.6	10.7	c
CDCl ₃	1	-11.1	10.0	13.1	-12.5	12.5	15.1	<1.0	1.4	10.6	c
CDCl ₃	0.1	-11.4	10.7	12.7	-12.7	~12.5	14.2	<1.0	1.2	10.7	С
pyridine-d ₅	1	-10.6	8.4	14.2	-12.4	10.2	16.4	<1.0	1.8	10.6	e
C_6D_6/Me_2SO-d_6 (1:1)	1	-10.7	8.7	14.1	-12.4	10.5	16.6	<1.0	1.7	10.7	С
C_6D_6/CD_3CN (1:1)	1	-10.8	8.8	14.0	f	f	f	f	f	10.6	e

^a Weight/volume. ^b NH decoupled or D_2O exchanged. Couplings assigned by analogy to NH-decoupled or D-exchanged case in other examples. ^c Reference 3. ^d Obscured by Me₂N peak. ^e This work. $f\Delta\nu$ of H_C and H_D only 18 Hz. Strong second-order effects on couplings.

Table II. Coupling Constants (in Hz) for 1-5 and 8 at 300 MHz, Ambient Probe Temperature (~25 °C).

compd	solvent	% conc ^a	J_{AB}	$J_{ m AP}$	$J_{\mathtt{BP}}$	$J_{ m CD}$	$J_{ m CP}$	$J_{ extsf{DP}}$	J_{AC}	$J_{\mathtt{BD}}$	other
1	$C_6D_6^b$	10	-10.5	8.6	14.5	-12.6	10.0	17.8	<1.0	1.8	$J_{\text{Me}_2\text{N}}^c = 10.5; J_{\text{CNH}} = 5.8; J_{\text{DNH}} = 5.2$
1	C_6D_6	1	-10.8	9.6	13.6	-12.6	d	16.8	<1.0	1.8	
1	CDCl ₃	1	-11.1	10.0	13.1	-12.5	12.5	15.1	<1.0	1.4	
2	C_6D_6	10	-10.6	13.2	10.6	-12.2	16.8	13.8	1.6	<1.0	$J_{HP}(CH_3CH_2)^c = 10.8; J_{HH}(CH_3CH_2) = 7.1;$
											$J_{\text{CNH}} = 4.9; J_{\text{DNH}} = 2.9$
2	C_6D_6	1	-10.8			-11.8	17.5	11.8		<1.0	
2	CDCl ₃	10	-11.1	14.7	9.3	e	e	e		<1.0	
2	CDC1 ₃	1	-10.9	14.8		-12.0	18.0	e	<1.0	1.7	
3	C_6D_6	10	-11.0	18.0	6.0	-11.5	22.2	7.1	2.2	<1.0	$J_{HP}(Me_2CH)^f = 18.6; J_{HH}(Me_2CH) = 6.8;$
											$J_{\text{CNH}} = 5.0; J_{\text{DNH}} = 1.8$
3	$C_6D_6^{b,g}$	1				-11.4	24.2	5.0 ^h		<1.0	
3	acetone-d ₆	10	-10.9	18.8		-11.5	23.5	5.4		<1.0	
3	CDC ₁	10	-11.l	18.8		-11.5	23.2	6.0		<1.0	
3	CDC ₁	1	-11.0			-11.7	23.6	5.3	<1.0	2.6	
4	C_6D_6	10	-10.8	i	9.6	-12.0	17.1	11.7	1.7	<1.0	$J_{HP}(ClCH_2CH_2) = 5.0; J_{HH}(ClCH_2CH_2) = 6.8;$
4	C D	,	11.0	16 411	0.0	11.6	10.4	0.0	2.0	-10	$J_{\text{CNH}} = 4.8; J_{\text{DNH}} = 2.0$
4	C_6D_6	10		16.4^{ij}		-11.6	19.4	9.8		<1.0	
4	acetone-d ₆	10	-10.6	15.0		-11.7	18.8	10.3	1.7		
4	CDC1 ₃ ^b	1	-11.1	17.2	7.0		21.2	7.9	<1.0	1.8	
5	C_6D_6	10	-10.8	20.7	4.8	-11.9	17.6	5.1	2.4	<1.0	$J_{\text{Me}_2\text{N}} = 9.6$
5	acetone-d ₆	10	-10.9	18.6	6.7	-12.2	15.4	6.7	2.1	<1.0	7 (CIOH CH.) 53 7 43 7 30
8	C_6D_6	10	-11.1	15.6	7.8		16.4 ^h	9.9 ^{h,k}	1.0	<1.0	$J_{\text{HH}}(\text{ClCH}_2\text{CH}_2) = 7.3^l; J_{\text{CH}} = 4.3; J_{\text{DH}} = 3.0$
8	$C_6D_6^m$	1	-11.0	15.8	7.6	-11.8	17.6	9.6	1.1	<1.0	
8	CDC1 ₃ "	0	0	17.7	4.7	0	0	0	0	0	
8	H_2O^n	0	0	13.5	9.9	0	0	0	0	0	

"Weight/volume. "NH decoupled or D₂O exchange. "At 1% in C₆D₆. "Obscured by Me₂N peak. "Obscured by overlap with (CH₃CH₂)₂N. 'At 1% in CDCl₃. "Coupling constants from sample with D₂O added. "Couplings of H_C and H_d with ring NH disappear on exchange with D₂O. 'Obscured by overlap with NCH₂CH₂Cl. 'Determined from H_A decoupling. "H_C and H_D poorly resolved. 'J_{HP}(ClCH₂CH₂) not determined because of apparent nonequivalence of CH₂P hydrogens. "From H₅-decoupled and H₅-decoupled/D₂O added spectra. "Values from ref 9. "Not reported."

equilibria of 7^4 is found to apply to $9 \rightleftharpoons 10$ by comparison of 1 and 5. Finally, we report a study of the chair \rightleftharpoons chair equilibrium

for cyclophosphamide itself which includes an analysis of both CH_2O and CH_2N proton couplings to phosphorus and demonstrates a large effect of solvent on the conformational equilibrium (9 \rightleftharpoons 10).

Results

Preparation. 1-4 resulted from reaction of the amino alcohol 11 (R = H) with the appropriate $ZP(O)Cl_2$ reagent. Reaction of $(Me_2N)_3P$ with 11 (R = Ph) followed by N_2O_4 oxidation afforded 5. The two diastereomers of 6, prepared in a manner

completely analogous to that for 7,4 were separated by MPLC. Amino alcohol 11 resulted from LiAlH₄ reduction of the amide ester, prepared routinely from the acid chloride of the half ester,

which was readily available in two steps from diethyl dimethyl-malonate. Assignments of cis and trans geometries (relationship of t-Bu to i-Pr₂N) to the diastereomers at $\mathbf{6}$ were made (see below) by analogy to those of $\mathbf{7}^{4a}$ on the basis of the relative upfield 31 P NMR shift of the cis isomer compared to that of the trans isomer, the expected chair conformation of the trans isomer (confirmed by 1 H NMR), and the parallel seen in relative chemical shifts of \mathbf{H}_{A} vs. \mathbf{H}_{B} and \mathbf{H}_{C} vs. \mathbf{H}_{D} for the different diastereomers of $\mathbf{6}$ and $\mathbf{7}$.

Proton NMR Parameters and Conformations of 1–5 and 8. In Table I are listed proton coupling constants for 1 ($Z = Me_2N$) from essentially first-order spectra obtained at 300 MHz under various conditions of solvent and concentration. As concluded previously,⁵ we believe chair conformers 9 and 10 are populated (see Table IV) in 60/40 (9/10) ratio in C_6D_6 at 1% concentration. (The X-ray structure of 1 shows it to be in conformation 9 in the crystal.⁵) A total range of major conformer population of 56-65% in C_6C_6 and CDCl₃ at different concentrations is observed. Conformer populations of 1–5 and 8 were estimated on the assumption that only chair conformations 9 and 10 can be populated. This assumption is verified by the relative constancy of the sums of $J_{\rm AP} + J_{\rm BP}$ and $J_{\rm CP} + J_{\rm DP}$ in Tables I and II and parallel changes in $J_{\rm AP}$ and $J_{\rm CP}$ and in $J_{\rm BP}$ and its $J_{\rm DP}$ counterpart.⁶ (A boat or

⁽⁶⁾ As can be seen from the later discussions, depopulation by the 5,5-dimethyl compounds of 9 in favor of a twist conformer analogous to 14 would keep $J_{\rm CP}$ and $J_{\rm DP}$ similar to what they are in 9. Simultaneously, $J_{\rm AP}$ and $J_{\rm BP}$ would undergo change in compensating fashion much as in equilibrium 9 \rightleftharpoons 10. This pattern of $J_{\rm HP}$ variation is not observed in Tables I and II.

Table III. ¹H (C₆D₆) at 300 MHz and ³¹P Chemical Shifts for 1-5 and 8, Ambient Probe Temperatures (~25 °C)

compd	conc	$\delta_{\mathbf{A}}$	δ_{B}	$\delta_{\rm C}$	δ_{D}	δ_{NH}	$\delta_{\mathrm{CH_3}}$	other	³¹ P
1	10	3.54	3.69	2.64	2.83	5.30	0.98, 0.58	2.57 (Me ₂ N)	13.8ª
1	1	3.49	3.70	2.56	2.78	4.81	0.89, 0.58	$2.54 (Me_2N)$	
2	10	3.53	3.93	2.67	3.08	4.93	0.85, 0.80	1.09 (CH_3CH_2); 3.16 (CH_3CH_2) ^b	13.6^{a}
2	1	3.47	3.93	2.50	2.97	3.93	0.78, 0.72	1.05 (CH_3CH_2); 3.11 (CH_3CH_2) ^b	
3	10	3.46	4.14	2.52	3.16	3.43	0.95, 0.61	3.54 (NHCHMe ₂); 1.27, 1.34 (NCHMe ₂)	13.5^{a}
3	1	3.39	4.17	2.29	3.08	2.21	0.94, 0.46	$3.49 \text{ (NHC}_{HMe_2}); 1.23, 1.34 \text{ (NCH}_{Me_2})$	
4	1	3.36	3.82	2.31	2.77	с	0.69, 0.53	$3.17 \text{ (NC}H_2\text{CH}_2\text{Cl)};^d 3.32 \text{ (NCH}_2\text{C}H_2\text{Cl)}$	12.9^{a}
4	10	$\sim 3.42^{c}$	3.80	2.46	2.82	4.14	0.69, 0.66	3.18 (NC H_2 CH ₂ Cl); d 3.32 (NCH ₂ C H_2 Cl)	
5	10	3.14	4.14	3.32	2.80		0.99, 0.51	$2.42 \text{ (Me}_2\text{N)}$; $6.69-7.47 \text{ (C}_6\text{H}_5)$	8.3e
8	10	3.61	3.95	2.63	2.95	4.10	$\sim 1.10, f \sim 1.06 f$	3.18 (NCH_2CH_2CI); 3.39 (NCH_2CH_2CI)	12.9^{a}
8	1	3.59	3.93	2.58	2.92	3.86	$\sim 1.10, f \sim 1.06$	$3.16 \text{ (NC}H_2\text{CH}_2\text{Cl)}; 3.37 \text{ (NC}H_2\text{C}H_2\text{Cl)}$	

^a1% in CDCl₃. ^bProtons nonequivalent. ^cOverlapped with (NCH₂CH₂Cl). ^dCenter of CH₂ multiplet. ^cAcetone-d₆. ^fProtons at C₅.

Table IV. Approximate Conformer Populations for 1-8 at 25 °C

			assı	umed	% 9 ba	ased on			$\Delta\Delta G^{f o}$		
compd	solvent	conc	J_{AP}	$J_{\mathtt{BP}}$	$\overline{J_{ ext{AP}}}$	$J_{\mathtt{BP}}$	av	$\Delta G^{\circ}(9 \rightarrow 10)$	$\overline{\mathrm{C_6D_6}^a}$	CDCl ₃ ^b	
1	C ₆ D ₆	10	2.0	22.0	67	63	65	0.35			
1	C_6D_6	1	2.0	22.0	62	58	60	0.23	0		
1	$CDCl_3$	10	2.0	22.0	62	59	61	0.26			
1	$CDCl_3$	1	2.0	22.0	58	54	56	0.14		0	
1	$CDCl_3$	1	1.0	23.0	60	56	58	0.18			
1	$CDCl_3$	0.1	2.0	22.0	57	54	56	0.13			
2	C_6D_6	10	2.0	22.0	44	43	43	-0.16			
2	C_6D_6	1	2.0	22.0	40	38	39	-0.25	-0.48		
2	$CDCl_3$	1	2.0	22.0	37	39	38	-0.29		-0.43	
3	C_6D_6	10	2.0	22.0	20	20	20	-0.81			
3	C_6D_6	1	2.0	22.0	12	14	13	-1.0	-1.2		
3	$CDCl_3$	1	2.0	22.0	13	15	14	-1.0		-1.1	
4	C_6D_6	1	2.0	22.0	28	30	29	-0.52	-0.75		
4	$CDCl_3$	1	2.0	22.0	25	24	25	-0.64		-0.78	
5	C_6D_6	10	2.0	23.0	14	12	13	-1.0	-1.2		
8	C_6D_6	1	2.0	22.0	31	28	30	-0.49	-0.72		
8	CĎČl₃ ^c	d	2.0	22.0	22	14	18	-0.80		-0.94	
8	H_2O^c	d	2.0	22.0	43	40	42	-0.18	-0.41	-0.32	

^aRelative to $\Delta G^{\circ}(9 \to 10)$ for 1 in C_6D_6 at 1% concentration. ^bRelative to $\Delta G^{\circ}(9 \to 10)$ for 1 in CDCl₃ at 1% concentration. ^cBased on J_{AP} and $J_{\rm BP}$ from ref 9. ^d Not reported.

twist structure is expected to be strongly destabilized by the 5-methyl substituents and, therefore, not to be populated.) For 9 and 10 it is clear that

$$N(9) \times J_{AP}(9) + N(10) \times J_{AP}(10) = J_{AP}(obsd)$$
 (2)

$$N(10) = 1 - N(9)$$
 (3)

Therefore

$$N(9) = (J_{AP}(obsd) - J_{AP}(10))/(J_{AP}(9) - J_{AP}(10))$$
 (4)

Similarly, for J_{BP}

$$N(9) = (J_{BP}(obsd) - J_{BP}(10))/(J_{BP}(9) - J_{BP}(10))$$
 (5)

To obtain rough estimates of molar fractions of 9 and 10 (N(9) and N(10)) from eq 2-5, one need only have reasonable values for J_{AP} and J_{BP} of 9 and 10. (Calculations are based on H_A and H_B because of the variation with R in the coupling constant sum for H_C and H_D in 1–5.) As a reasonable model system, the MeO analogue of 5, which is almost entirely in one formation with the small, electronegative MeO axial, was used. Values for J_{AP} (22.5 Hz) and $J_{\rm BP}$ (2.4 Hz) were reduced by about 0.5 Hz to 22.0 and 2.0 Hz to give a sum of 24.0 Hz, close to those of $J_{AP} + J_{BP}$ for 1-4 of Tables I and II. It was also assumed that the values of J_{AP} and J_{BP} are interchanges in 9 and 10, since little effect of phosphorus configuration on couplings is found in the 2-oxo-1,3,2-dioxaphosphorinanes.3 Values of 2.0 and 23.0 Hz gave for 5 a better match of the experimental sum and closer agreement of the percentages of 9 based on experimental J_{AP} and J_{BP} . As can be seen for 1 in Table IV, small changes in assumed J_{AP} and $J_{\rm BP}$ for 9 and 10 have only a minor effect on the calculated conformer populations. (Compare numbers for 1 in CDCl₃ at 1% based on different assumed J_{HP} values.)

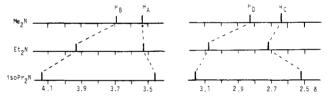


Figure 1. Effects of changing Z on the chemical shifts of HA, HB, HC, and HD of 1-3.

Assignments of major conformational populations, 9 or 10, to 1-3 were made on the basis of two criteria: (1) trends in chemical shifts of protons A-D (Table III), and (2) effects of dilution and solvent change on J_{HP} values (Tables I and II). (Only δ values in C₆D₆ are recorded as parallel though more compressed trends were found in the other solvents.) Most noteworthy for 1-3 is the crossover (for H_A vs. H_B and H_C vs. H_D) in correlation of larger $J_{\rm HP}$ with relative chemical shift between 1 and the others, 2 and 3; i.e., for 1 the larger J_{HP} (J_{BP} or J_{DP}) is associated with the downfield proton (H_B or H_D) of the CH₂O or CH₂N, whereas for 2 or 3, the opposite is true. We interpret this to mean that there is an important change in the conformational population between 1 and 2 and that the major conformation is different in the two cases. Since it is reasonable that Et_2N and i- Pr_2N should be larger sterically than Me₂N, it is concluded that for 1 (Table IV), the major conformer populated is 9 (56-65%), while 2 populates 10 to the extent of 57-62%. Moreover, i-Pr₂N further destabilizes 9 in favor of 10 which is 80-87% populated.

The trend in chemical shifts for H_A, H_B, H_C, and H_D in Table III is especially notable for H_A and H_B , as shown graphically in Figure 1, and is readily explained. Thus, H_B of 1 is predominantly equatorial (conformer 9, $J_{BP} > J_{AP}$) and slightly deshielded by the equatorial P=O cis to it; hence $\delta_B > \delta_A$. In the series 1-3, the progressive shift of equilibrium $9 \rightleftharpoons 10$ toward 10 moves H_B

⁽⁷⁾ Unpublished results from this laboratory.

Table V. NMR Parameters for 2-(Dialkylamino)-2-oxo-5-tert-butyl-1,3,2-oxazaphosphorinanes 6 and 7

compd ^a	solve (% co		$J_{ m AB}$	J_{AX}	$J_{ m BX}$	$J_{ m AP}$	$J_{\mathtt{BP}}$	$J_{ m CD}$	J_{CX}	$J_{ m DX}$	$J_{ extsf{CP}}$	$J_{ m DP}$	$J_{ m BD}$	$J_{ m CNH}$	$J_{ m DNH}$	$J_{ m NHP}$	rei
cis-6	C ₆ D ₆ (1%	6)	-10.5	9.3	6.2	14.4	10.3	-12.4	10.6	4.8	5.1	19.5	0.6	5.1	6.8	~5	ь
cis-6	CDCl ₃ (<1%)	-10.8	10.3	5.2	10.9	12.2	-11.9	11.1	5.2	7.9	16.1	1.5	4.4	6.2	~4	b
cis-7	toluene-d	8 (2%)	-10.4	10.7	4.6	6.5	16.8	-12.8	11.3	4.5	2.7	23.2	2.0	5.8	6.9	6.4	b
trans-6	C_6D_6 (~	10%)	-11.0	11.2	3.8	3.5	21.2	-11.0	11.0	4.2	4.6	23.9	2.4	1.6	4.2	c	d
trans-7	C_6D_6 (1%)	6)	11.0	11.0	3.8	4.0	20.8	-11.0	11.0	4.3	5.4	22.0	2.4	2.4	4.4	e	d
	$\delta_{\mathbf{A}}$	$\delta_{ m B}$	$-\delta_{\rm C}$	$\delta_{ m D}$		$\delta_{\rm X}$	$\delta_{i ext{-Bu}}$	$\delta_{ m NH}$			oth	er			δ^{31} P (solv	rent)	ref
cis-6	3.80	4.26	2.73	3.00	1	.92	0.59	3.86				$J_{\rm HH} = 18$		(z);	12.1 (CD	Cl ₃)	b
cis-6	3.98	4.36	3.00	3.27	2	10	0.89	2.40	1.21,	1.24 (1	Me ₂ CH	, J _{HH} = _P = 18	6.8 H	(z);			
cis-7	3.78	4.09	2.72	3.08	1	.75	0.60	5.14				10.8 F			14.6 (C ₆ I	O ₆)	d
trans-6	4.31	4.02	3.23	2.93	1	.66	0.59	3.02	1.31, 3.54	1.37 (A (Me ₂ 0	ме₂СН СН, Ји	, $J_{\rm HH}$ = 18	6.8 H Hz)	(z);	14.4 (CD	Cl ₃)	b
trans-7	4.24	3.99	3.14	2.92	. 1	.59	0.56	3.62				9.9 Hz			14.7 (C ₆ I	O ₆)	d

^aH_X decoupled and NH exchanged or decoupled spectra run in all cases at this or another concentration. ^bThis work. ^cNH region poorly resolved. ^dReference 4. ^cPartial overlap with H_D.

predominately axial and results in $J_{\rm AP}$ becoming greater than $J_{\rm BP}$ and progressive deshielding of $H_{\rm B}$. The latter is predictable from the known large deshielding effect of the axial P=O on syn-axial hydrogens. (See relative $\delta_{\rm A}$ and $\delta_{\rm B}$ for cis-6 and trans-6 discussed below.) The environment of $H_{\rm A}$ is less strongly perturbed, since it is not syn-axial to axial P=O in either 9 or 10 and indeed moves slightly upfield in the series 1-3, perhaps because of the decreasing influence of the syn-axial polar P-N bond of 9. The above ideas apply also to the chemical shift trends for $H_{\rm C}$ and $H_{\rm D}$ (Table III and Figure I), though less variation in $\delta_{\rm D}$ is seen.

The association of the larger $J_{\rm HP}$ of the CH₂O hydrogens of 4 with the upfield proton H_A also is consistent with the assignments of $J_{\rm HP}$ and δ values of Tables I-III and the greater population of 10 (71-75%). The same is true of 5 (87% 10). The assignment of 4 also is consistent with earlier work on CPA itself.⁹

Tables I and II show the influence of $J_{\rm HP}$ values for 1-3 of changing solvent from C_6D_6 to $CDCl_3$ and of dilution in both solvents from 10% to 1% or less. The changes are small but real. These effects constitute the second criterion for assigning the major conformer to 9 or 10. Dilution of 1 in either solvent and the change to $CDCl_3$ (at a given concentration) cause a decrease in $J_{\rm BP}$ and $J_{\rm CP}$; i.e., the larger $J_{\rm HP}$ ($J_{\rm BP}$) is decreased as is consistent with depopulation of the major conformation (9). Just the opposite effects on $J_{\rm AP}$ and $J_{\rm BP}$ occur with 2 and 3 (Table II). Since it is reasonable that the same conformation (9) is being depopulated in all three cases, this means that the major conformer is different for 1 than it is for 2 and 3.

Mustard derivative 4 shows (Table II) a response to $J_{\rm HP}$ to solvent change parallel to that seen for 3 at the 10% concentration level. Dilution effects on $J_{\rm HP}$ for 3 and 4 parallel each other as well. However, the same solvent change for 10% solutions of 5 has the *opposite* effect on $J_{\rm HP}$ values. This is likely related to the presence of phenyl rather than hydrogen on ring nitrogen and the lack of H-bonding effects (see below). We judge the criterion based on the relative chemical shifts of H_A and H_B to be reliable for the assignment of 10 as the major conformer for 5.

Based on relative chemical shifts and $J_{\rm HP}$ values for H_A , H_B , H_C , and H_D , we conclude that the major conformer for CPA (8) in C_6D_6 also is 10, about 70% (Table IV). Indeed, by use of $J_{\rm AP}$ and $J_{\rm BP}$ values reported earlier for CPA, ⁹ the effect of changing to CDCl₃ (Table II) is seen to be parallel to that displayed by 1-4, though magnified in 8. Our estimate in Table IV of the population of 9 in CDCl₃ (18%) is close to that previously reported (14%, 6.1/1.0 ratio) which was obtained by the use of somewhat

different assumed $J_{\rm HP}$ values. (Comment on the large effect of aqueous solvent will be made later.) The previous assignment of an equatorial preference for the nitrogen mustard group of 8 was based on a careful analysis of lanthanide-induced chemical shifts; we are in complete agreement, as noted above. In the earlier report, only $J_{\rm AP}$ and $J_{\rm BP}$ were given. Our results constitute the first ¹H NMR analysis of all $J_{\rm HP}$ for 8.

¹H NMR Parameters and Conformations of cis- and trans-6. The identity of trans-6 is firmly established by the relative chemical shift orders $\delta_A > \delta_B$ and $\delta_C > v_D$ (Table V), which are completely consistent with the other 5-tert-butyl-2-oxo-1,3,2-dioxa- and oxazaphosphorinanes we have studied, ^{4,8} including trans-7.4 (Parameters for 7 are also given in Table V for comparison.) It is evident that the axial P=O is strongly deshielding of the syn-axial H_A and H_C . For the cis diastereomers of both 6 and 7, $\delta_B > \delta_A$, i.e., reversed from the order for the trans isomers. Both trans-6 and -7 are very largely if not entirely in chair conformation 12 as shown by the large J_{BP} and J_{DP} values for the equatorial hydrogens and small phosphorus couplings for H_A and H_C . These

are consistent with the known Karplus-like effects of geometry on ${}^3J_{\rm HP}$ in such systems. ¹¹ The 2.4-Hz $J_{\rm BD}$ coupling stems from the W arrangement of $H_{\rm B}$ and $H_{\rm D}$ in 12. The identities of cis-7 and trans-7¹² have been proven by X-ray crystallography. The relative ³¹P NMR chemical shifts for the diastereomers of 6 (Table V) also are confirmatory of their structures. (δ ³¹P trans > δ ³¹P cis. ³)

Clearly, however, the major conformation assumed by cis-6 is not a chair. This is best seen by inspection of the coupling constants obtained at 1% in C_6D_6 (Table V). Although chair like values for $J_{\rm CX}$, $J_{\rm DX}$, $J_{\rm CP}$, and $J_{\rm DP}$ can be noted, the corresponding parameters for $H_{\rm A}$ and $H_{\rm B}$ feature the combination of large $J_{\rm AP}$ and large $J_{\rm AX}$, which is diagnostic of a major contribution of twist conformation 14.4.13,14 In a case in which 14 is nearly exclusively populated, $J_{\rm AP}$ values of the order 19–20 Hz and $J_{\rm BP}$ diminished to 4–5 Hz have been encountered.⁴ An important population of 13 is also present for cis-6 as evidenced by the relatively large time-averaged $J_{\rm BP}$ (10.3 Hz). In 14 the $H_{\rm B}CCH_{\rm X}$ dihedral angle

⁽⁸⁾ Bentrude, W. G.; Hargis, J. H. J. Chem. Soc., Chem. Commun. 1969,

⁽⁹⁾ White, D. W.; Gibbs, D. E.; Verkade, J. G. J. Am. Chem. Soc. 1979, 101, 1937.

⁽¹⁰⁾ The increase in population of 9, the conformer expected to have the larger dipolar moment, is exactly parallel to what is noted for 2-oxo-1,3,2-dioxaphosphorinanes.³

⁽¹¹⁾ See for example: Kung, W.; Marsh, R. E.; Kainosho, M. J. Am. Chem. Soc. 1977, 99, 5471 and references therein.

⁽¹²⁾ Newton, M. G.; Pantaleo, N. S.; Chandrasekaran, S.; Bentrude, W. G., unpublished results.

⁽¹³⁾ Sopchik, A. E.; Bentrude, W. G. Tetrahedron Lett. 1980, 4679.
(14) Gorenstein, D. G.; Rowell, R. J. Am. Chem. Soc. 1979, 101, 4925.
Gorenstein, D. G.; Rowell, R.; Findlay, J. Ibid. 1980, 102, 5077.

is somewhat reduced, and increased $J_{\rm BX}$ values can be encountered, as in Table V. It is notable that J_{AX} (9.3 Hz) for cis-6 is decreased below 10-11 Hz. This could signify the population of perhaps 10% of conformer 15 but more likely only reflects a large degree of twist in 14, leading to a decreased H_ACCH_Y dihedral angle, especially since J_{CX} (10.3 Hz) is not greatly reduced. All W-type arrangements of HA, HB, HC, and HD are lost in 14 as is consistent with the small $J_{\rm BD}$ found cis-6.

It is possible to estimate the percentage population of 14 for cis-6 (1% in C_6D_6) and 7 (2% in toluene- d_6) by assuming population of both 13 and 14 and use of equations analogous to 2-5 applied above to 1-5 and 8. (Obviously cis-7 populates chair structure 13 to a greater extent than it does twist 14.) Table VI records values assumed for J_{AP} and J_{BP} in 13 and 14. In the first set, $J_{\rm AP}$ (13) and $J_{\rm BP}$ (13) are the values found for the corresponding cis compound with axial MeO in place of R₂N and for which 13 is evidently very highly, if not entirely, populated.⁷ For $J_{\rm AP}$ (14) and $J_{\rm BP}$ (14), the couplings found at -18 °C for the compound analogous to cis-7, but with R = Ph, are used.^{4a} This compound is nearly entirely in a twist conformation like 14. The second set of parameters arises from assuming that J_{AP} and J_{BP} are simply interchanged in 13 and 14, which could be true if 14 is sufficiently twisted. Percentage populations of 14 estimated in this manner are recorded in Table VI and show averaged numbers of 22% for cis-7 and 63% for cis-6. The scatter is greater for cis-6. The greater population of 14 by cis-6 is presumably a result of the increased conformational energy of axial i-Pr₂N compared to Me₂N; this effect is exactly parallel to and confirmative to that found for 1 and 3 in which the i-Pr₂N shifts the $9 \Rightarrow 10$ equilibrium strongly in favor of 10.

At <1% in $CDCl_3$, cis-6 also populates nonchair conformations, but the actual conformational equilibria involved is not completely clear. Intermolecular hydrogen bonding is completely absent for cis-6 at 1% concentration in CDCl₃ (FT-IR). The large values of $J_{\rm AX}$ (10.3 Hz) and $J_{\rm CX}$ (11.1 Hz) show that the tert-butyl remains equatorial or pseudoequatorial in all conformations. One notes that J_{CP} is increased and J_{DP} reduced from the values for cis-6 in C₆D₆. Population of the twist conformer with the ring twisted opposite to that of 14 would exchange the position of H_{C} and H_D , leading to $J_{DP} > J_{CP}$. A small population of this conformer in place of 14 would indeed lead to the reduced J_{DP} and increase J_{CP} noted in Table V. At the same time, the values of $J_{\rm AP}$ (pseudoaxial $H_{\rm A}$) and $J_{\rm BP}$ (pseudoequatorial $H_{\rm B}$), as observed, would move toward what they would be in the chair, 13. The same trends in J values would occur in response to population of a boat conformer with bowspirit C(5) and P.

Infrared Studies. The hydrogen-bonded NH region (maxima at 3185-3230 cm⁻¹) in the infrared spectra of 1-4 and 8 was examined in C₆D₆ and/or CDCl₃ to assess what effect intermolecular hydrogen bonding might have on conformation populations. Even at 1% in C₆D₆, 1 showed a very intense hydrogen-bonded NH band. This band was less intense though still strong at 5% in CDCl₃ but became very weak at 1%. The other compounds, 2-4 and 8, completely lost this absorption at 1% concentration in CDCl₃, although it was present at higher concentrations. At 1% solute concentration (0.1% for 1) the conformational energy order $i\text{-Pr}_2N > (\text{ClCH}_2\text{CH}_2)_2N > \text{Et}_2N > \text{Me}_2N \text{ still persists}$ (Tables II and IV). Thus, hydrogen bonding does not play the major role in determining conformation. Nonetheless, a secondary

effect of hydrogen bonding on conformation seems probable, because the percentage of 9 present is greater in all cases at higher concentrations in either solvent. The infrared studies show that at least for 1, hydrogen bonding is greatly reduced in CDCl₃ compared to C₆D₆. The general decrease in population of 9 in CDCl₃ compared to C₆D₆ and on dilution in CDCl₃ (Table IV) suggests that intermolecular hydrogen bonding is more important in conformation 9 than it is for 10. Indeed the X-ray structure of 1 (conformation 9) shows clearly intermolecular P=O.....HN association.5

The P=O stretching region of the compounds also was examined, because correlations of frequency with P=O orientations have been useful for 1,3,2-dioxaphosphorinanes³ and have shown some promise with 1,3,2-oxazaphosphorinanes. 15,16 (See however, refs. 4a,9.) Values are collected in Table VII. Inspection of these numbers makes it clear that for 1-5 such correlations are not straightforward, and the IR results only can be interpreted with the aid of NMR data. The number of bands displayed can vary with the medium, as for example with 1. The series of compounds 1-3, which by ¹H NMR shows a progressive shift in equilibrium from one somewhat favoring 9 to one with 10 very predominant, fail to exhibit faithfully the same trend by IR. Thus, 1 shows only one band in KBr and CCl₄ but two bands in CDCl₃. The higher frequency one in CDCl₃ (equatorial P=O)³ is slightly more intense in agreement with ¹H NMR assignments of a 60/40 9/10 population ratio. In CDCl₃ 2 shows two bands, and the slightly higher intensity of the 1200-cm⁻¹ band fits with the predominance of the P=O axial conformer, in accordance with ¹H NMR. However, 3 which is ca. 85% in conformation 10 (1H NMR), has an IR spectrum like that of 2 with the 1205-cm⁻¹ band only slightly more intense than the one at 1227 cm⁻¹. Moreover, 4 has the band intensities reversed from those at 2 and 3 even though 10 also is favored for 4. It was previously reported that CPA (8) shows five bands in the P=O stretch region when most likely only two conformers are populated.

The increase in P=O frequency in comparing 5 with 3 (KBr) illustrates the effect of replacing a ring hydrogen with a phenyl when both P=O are predominately axial. Both trans-6 and trans-7 (KBr) with P=O axial (structures like 12) show a lowfrequency P=O axial absorption (1200-1205 cm⁻¹) compared to that of the NPh (ring) analogue of 7 with P=O also axial (absorption at 1222 cm⁻¹ in KBr, 1236 cm⁻¹ in CCl₄). This is clearly an effect of NH vs. NPh rather than a change in P=O orientation, a possibility not always recognized.16

The major bands for cis-6 and trans-6 in KBr have similar frequencies as is reasonable, since P=O for cis-6 is pseudoaxial in twist 14 and is axial in trans-6. (The same is true conformationally in the crystal for cis-7 and trans-7.) However, cis-7 is largely in the P=O equatorial chair 9 in solution. Yet the more intense band is near that of the axial P=O of trans-7 in CCl₄, a major discrepancy.

³¹P Chemical Shifts. Typically, for 2-oxo-1,3,2-dioxaphosphorinanes, the axial orientation of a given substituent on phosphorus results in a ³¹P chemical shift upfield of that for the corresponding equatorially substituted compound.³ This effect is seen for the oxaza systems as well.^{2,4,7,9} cis-6 and trans-6 follow this criterion well (Table V) even though only a fraction of cis-6 is in conformation 13. To attempt to correlate conformational equilibrium $9 \rightleftharpoons 10$ with ³¹P chemical shift for 1-4, however, is not expected to be straightforward as the various alkylamino groups also have different electronic properties. The expected order³ based purely on conformational equilibrium $9 \rightleftharpoons 10$, $\delta_3 >$ $\delta_2 > \delta_1$, is not seen (Table III). Indeed in CDCl₃ (1%) the ³¹P chemial shifts for 1-3 are essentially identical. Any attempt to rationalize the very small difference in chemical shifts for 2 and 4, which are similar conformationally but electronically opposite (and could therefore be very different), is futile. By contrast the

⁽¹⁵⁾ Kinas, R.; Pankiewicz, K.; Stec, W. J.; Farmer, P. B.; Foster, A. B.; Jarman, M. J. Org. Chem. 1977, 42, 1650.

⁽¹⁶⁾ Roca, C.; Kraemer, R.; Majoral, J.-P.; Navech, J. Org. Magn. Reson. 1976, 8, 407. Arshinova, R.; Kraemer, R.; Majoral, J.-P.; Navech, J. *Ibid.* 1975, 7, 309. Durrieu, J.; Kraemer, R.; Navech, J. *Ibid.* 1973, 5, 407.

		assumed p	arameters	_	% 14 b	ased on			
compd	$J_{AP}(13)$	$J_{AP}(14)$	$J_{\mathrm{BP}}(13)$	$J_{\mathrm{BP}}(14)$	$\overline{J_{ ext{AP}}}$	$J_{\mathtt{BP}}$	av	$\Delta G^{\circ}(13 \rightarrow 14)$	$\Delta\Delta G^{f o}$
cis-7	2.8	19.6	20.7	4.8	22	24			
cis-7	2.8	20.7	20.7	2.8	20	22	22	0.72	
cis-6	2.8	19.6	20.7	4.8	70	65			
cis-6	2.8	20.7	20.7	2.8	61	58	63	-0.30	-1.0

^a Using coupling constants from Table V obtained in C₆D₆ (7) or toluene-d₈ (6).

Table VII. Phosphorphyl Infrared Stretch Frequencies for 1-8, cm⁻¹

compd	KBr	CCl ₄	CDCl ₃
1	1217	1235	1212, 1229a
2	1199, ^b 1220 ^b	1200, 1225-1241	1200, ^a 1225
3	1203, ^a 1216	1206, ^a 1217, 1234	1203,4 1217
4	1218, 1230	1220, 1225-1240 ^{a,c}	1215, ^d 1230 ^a
5	1230,ª 1261	1236	
cis-6	1214		
trans-6	1202, ^a 1217		
cis-7	1195	1225, ^a 1240	
trans-7	1200	1220	
8 (hydrate)	1220-1235 ^d	1230, ^a 1239	

^a More intense. ^b Thin film. ^c Broad. ^d Shoulder.

1,3,2-dioxa systems have been found to be more readily interpretable. In fact it sometimes is possible to correlate ³¹P chemical shifts roughly with conformer populations.¹⁷

Discussion

Relative Conformational Energies (Effective Sizes) of R2N Substituents. The above results establish a substituent conformational free energy order for 1-4, based on the equilibrium 9 \Rightarrow 10, of i-Pr₂N > (ClCH₂CH₂)₂N > Et₂N > Me₂N. The respective values of $\Delta\Delta G^{\circ}$ for Et₂N, (ClCH₂CH₂)₂N, and *i*-Pr₂N (compared to Me2N) are the same within experimental error in CDCl₃ and C₆D₆. A total range of free energies of about 1.2 kcal/mol is covered (Table IV). The sterically larger, more branched alkyl substituents in R₂N could destabilize 9 somewhat via increased 1,3-syn-axial repulsions. Thus, a true steric effect is probably at least partially responsible for the phenomena observed here. However, the observed effect is perhaps larger than expected in view of the known pyramidal nature of the axial R₂N in 2-oxo-5 and 2-thio-1,3,2-oxazaphosphorinanes 18 which moves the R groups away somewhat from the axial ring hydrogens in the preferred P-N conformation with the lone pair directed toward the ring as in structure 16.15,18 (Indeed, as discussed below, Me₂N

$$\begin{array}{c|c}
 & R \\
 & N & R \\
 & R
\end{array}$$

also has a lower conformational free energy in the 1,3,2-oxazaphosphorinanes than in the 1,3,2-dioxaphosphorinane system.)

It is quite possible that certain stereoelectronic factors also are involved. Thus, in the 2-oxo-1,3,2-dioxaphosphorinanes, it is clear that orbital interactions, 3b,19 including those related to the anomeric effect, favor an axial orientation of sterically small electronegative substituents such as halogen, RO, and PhNH. Perhaps in the series of Me₂N, Et₂N, and *i*-Pr₂N, the progressive decrease in group electronegativities reduces the stabilization of axial R₂N gained from the interaction of ring oxygen and nitrogen lone pairs with the axial P-N σ^* orbital (anomeric effect). This would add to the axial conformational energy of these substituents in the same order *i*-Pr₂N > Et₂N > Me₂N, as the purely steric effect.

A second, stabilizing stereoelectronic effect may be important with R_2N (Z) equatorial as in structure 10. The optimal geometry

of these systems favors coplanarity of the trigonal planar R₂N and $P=0.4^{b,20,21a}$ The inability of an axial R_2N to attain this geometry accounts in part for its instability. The favored geometry may be a result of $n-\sigma^*$ interactions involving the nitrogen lone pair and the bonds to the ring atoms attached to phosphorus.²¹ Electron-supplying groups on nitrogen should enhance the lone pair participation in such bonding, leading to a stability order for equatorial R_2N of i-Pr₂N > Et₂N > Me₂N. Thus, both potential stereoelectronic effects discussed operate in the same direction as the steric repulsions to increase the stability of 10 relative to 9 in the order i-Pr₂N > Et₂N > Me₂N. It is also important to point out that apparent steric factors in the group R₂N are a dominant effect in determining P-N rotational barriers in $R_2NP(O)X_2$ and certain P=S compounds both cyclic and noncyclic.²² Indeed barriers for i-Pr₂N rotation are generally larger than for Me2N. Structure 16 represents, if not the barrier conformation for such rotation, a high-energy rotamer on the rotational pathway.

The relative conformational energies $(ClCH_2CH_2)_2N > Et_2N$ suggest, however, that stereoelectronic effects may not be so simply understood. Thus, electronegative R should *favor* the axial orientation on the basis of both arguments given above and result in the order $Et_2N > (ClCH_2CH_2)_2N$ in opposition to what is found. The steric effect of the β chlorine is not known.

Whatever its precise origins are, the relatively large effective size or conformational energy of the $i\text{-Pr}_2N$ is confirmed in the chair–twist equilibrium $13 \rightleftharpoons 14$ when comparing cis-6 with cis-7. Indeed, as noted in Table VI, the $i\text{-Pr}_2N$ of cis-6 is about 1 kcal/mol larger than the Me₂N of cis-7. Considering the error inherent in such estimates, the agreement with the 1.2 kcal/mol effect on equilibrium $9 \rightleftharpoons 10$ (Table IV) is gratifying.

The effect, discussed earlier, of changing from C_6D_6 to $CDCl_3$ on the conformational equilibrium of cis-6 could reflect differences in the degree of intermolecular hydrogen bonding which was shown by the FT-IR studies of 6 to be absent at 1% concentration in $CDCl_3$. Interestingly, the equilibrium $13 \rightleftharpoons 14$ for cis-7 showed little or no response to changes in solvent or concentration. (See also discussion below on solvent effects on $9 \rightleftharpoons 10$.)

The ca. 0.2 kcal/mol preference of Me_2N for the axial position (9) in 1 (Table IV), even though relatively small, is remarkable in view of its 1.1 kcal/mol equatorial preference (C_6D_6) in 2-oxo-2-(dimethylamino)-5,5-dimethyl-1,3,2-dioxaphosphorinane, 17;²³ i.e., Me_2N is more than 1 kcal/mol "smaller" in the oxaza

(20) Boyd, V. L.; Zon, G.; Himes, V. L.; Stalick, J. K.; Mighell, A. D.; Secot, H. V. J. Med. Chem. 1980, 23, 372. Karle, I. L.; Karle, J. M.; Egan, W.; Zon, G.; Brandt, J. A. J. Am. Chem. Soc. 1977, 99, 4803. Adamiak, D. A.; Saenger, W.; Kinas, R.; Stec, W. J. Z. Naturforsch., C 1977, 32C, 372. Clardy, J. C.; Mosbo, J. A.; Verkade, J. G. Phosphorus 1974, 4, 151. Garcia-Blanco, S. Perales, A. Acta Crystallogr., Sect. B 1972, B28, 2647. Brassfield, H. A.; Jacobson, R. A.; Verkade, J. G. J. Am. Chem. Soc. 1975, 97, 4143. Perales, A.; Garcia-Blanco, S. Acta Crystallogr., Sect. B 1977, B33, 1935

(21) (a) Paxton, K.; Hamor, T. A. J. Chem. Soc., Dalton Trans. 1978, 647. (b) Burdon, J.; Hotchkiss, J. C.; Jennings, W. B. J. Chem. Soc., Perkin Trans. 2, 1976, 1052.

(22) (a) Martin, J.; Robert, J. B. Tetrahedron Lett. 1976, 2475. (b) Jennings, W. B. J. Chem. Soc., Chem. Commun. 1971, 867.

⁽¹⁷⁾ Mosbo, J. A.; Verkade, J. G. J. Org. Chem. 1977, 42, 1549.

⁽¹⁸⁾ Newton, M. G.; Pantaleo, N.; Bentrude, W. G.; Chandrasekaran, S. Tetrahedron Lett. 1982, 1527.

⁽¹⁹⁾ Hudson, R. F.; Verkade, J. G. Tetrahedron Lett. 1975, 3231.

Figure 2. Structure for conformation 13 (Z = NMe₂, R = Ph) based on Dreiding model. Hemispheres approximate atomic radii (taken from ref 4a).

system. Inspection of Dreiding models and X-ray parameters indicates that the ca. 120° CNP bond angle in the ring and longer P-N compared to P-O bond length (both of which are seen in the X-ray structure of 15) move the axial Me2N further away from the axial hydrogens at C₄ and C₆ and reduce syn-axial repulsions. The balance of stereoelectronic effects of the type discussed earlier, which favors axial Me2N and equatorial P=O, is thus dominant. The axial Me₂N of 1 has been shown by X-ray crystallography to have a lengthened P-NMe2 bond and pyramidal structure about Me₂N nitrogen.⁵ Apparently the loss of PNMe₂ π stabilization which these X-ray parameters reflect is no longer great enough in the presence of reduced syn-axial repulsions in 1 to force the Me₂N equatorial. Whether the stabilization of equatorial Me₂N is as great in the 1,3,2-oxaza systems as it is with the 1,3,2-dioxa rings and the relative importance of n-σ* stabilization of axial substituents in the two rings (N vs. O as $n-\sigma^*$ participation) are at this point matters of speculation only. Even though such stereoelectronic interactions have received considerable experimental and theoretical consideration, it is clear that our understanding of them is as yet incomplete. If indeed reduced steric repulsions are responsible for the decrease in apparent size of Me₂N then the partial role of stereoelectronic effects in accounting for the increased conformational energies (apparent size) of Et₂N and i-Pr₂ in 1-3 seems even more probable. Further comparisons of 1,3,2-dioxa- and 1,3,2-oxazaphosphorinanes with substituents at P(2) less susceptible to stereoelectronic effects, e.g., alkyl groups, will be necessary, as will investigation of various ArMeN for which electronic effects alone can be examined. The equilibria $9 \Rightarrow 10$ and 13 = 14 are ideal for such comparisons, and studies of this type are under way.

Effects of N(3)R on Conformational Equilibria. The remarkable effect of replacing the hydrogen on ring nitrogen with phenyl on the conformational energy of the Me₂N substituent on phosphorus in 1,3,2-oxazaphosphorinanes is very well illustrated in the comparison of 5 with 1, Table IV. The change in equilibrium amounts to about 1.2 kcal/mol in favor of conformation 10. In an earlier study^{4a} of the effect of R on the equilibrium 13 \rightleftharpoons 14 for Z = Me₂N and R = H or Ph, the ring phenyl increased the conformational energy of axial Me₂N in 13 by at least 1.6 kcal/mol.^{4a} Since an error in estimated conformer population of 5% (e.g., 40% instead of 35%) will affect ΔG° by 0.1 kcal/mol for a 60/40 conformer ratio and by 0.2 kcal/mol in the ranges 80/20 to 90/10, the agreement between 1.2 and 1.6 kcal/mol is quite satisfactory. As previously outlined, 4a we ascribe this effect primarily to steric interactions between the methyl hydrogens of the axial Me₂N and the ortho hydrogens of the benzene ring. (See Figure 2 taken from an earlier paper. 4a) This conformational effect is an important one for 2-oxo-1,3,2-oxazaphosphorinanes which obviously is not present in their 2-oxo-1,3,2-dioxaphosphorinane counterparts. It is not seen with small substituents such as RO on phosphorus. Evidence for the confirmation of the steric importance of such a phenomenon has been found in unpublished work with various combinations of R = Ph and Z = Ph or mesityl. A stereoelectronic component to this effect might also be operative to some degree since the phenyl substitution on nitrogen makes the nitrogen lone pair less available for n-o* interactions with axial Me₂N.

Chair-to-Twist Free Energy Change (ΔG°_{CT}). Further consideration of the equilibrium 13 \rightleftharpoons 14 for cis-6 and cis-7 allows a reasonable estimation to be made of the energetic ease with which twist structures are populated. There are two energetic components (eq 6) to the observed ΔG° for equilibrium 13 \rightleftharpoons 14: the increase in free energy on change from the chair to the twist conformation (ΔG°_{CT}), and the favorable effect of placing the R_2N equatorial ($\Delta G^{\circ}_{R_2N}$). the $\Delta G^{\circ}_{R_2N}$ term is approximated by ΔG° (9 \rightarrow 10 or 18 \rightarrow 19). The release of steric repulsions is

$$\Delta G^{\circ}(13 \to 14) = \Delta G^{\circ}_{CT} + \Delta G^{\circ}_{R,N}$$
 (6)

closely similar, although small changes in ring geometry resulting from the 5-tert-butyl group could affect $\Delta G^{\circ}_{R,N}$ somewhat. Nonetheless, an approximation of ΔG°_{CT} can be obtained in this way. This dissection is clearly demonstrated by the cycle involving 18, 19, and 20. From ΔG° (13 \rightarrow 14) for cis-6 (equivalent to ΔG°_{obsd} for 18 \rightleftharpoons 19), ΔG°_{CT} (1% in C_6D_6) is 0.7 kcal/mol [-0.30-(-1.0)]. Based on cis-7, ΔG°_{CT} (1% in C_1D_6) is 0.5 kcal/mol [0.72-0.23]. The two values, 0.5 and 0.7 kcal/mol, are certainly within experimental error since, as mentioned earlier, ΔG° (13 \rightarrow 14) and $\Delta G^{\circ}_{R,N}$ are normally subject to errors of 0.1-0.2 kcal/mol. Furthermore, the scatter of values of population of 14 for cis-6 in Table VI is large. Both of these estimates are lower than the value of at least 1.6 kcal/mol in our earlier report.4a That number was derived from $\Delta G^{\circ}(13 \rightarrow 14)$ for cis-7 by use of an assumed $\Delta G^{\circ}_{R_3N}$ for Me_2N which was taken to be the same as that for $N(CH_2CH_2Cl)_2^9$ (reported equatorial/axial ratio for $N(CH_2CH_2Cl)_2$ of 8, 6/19). Similarly, if for the case $Z = Me_2N$, R = Ph, 14 (20) is at least 80% populated (as determined earlier^{4a}), then ΔG°_{CT} can be estimated to be less than 0.5 kcal/mol.

Clearly, the above values of ΔG°_{CT} are very low for a six-membered ring when compared to cyclohexane (4–5 kcal/mol²⁴) and 1,3-dioxane (8 kcal/mol²⁵) and similar to the 1 kcal/mol or less figures of ΔG°_{CT} estimated for 2-oxo-1,3,2-dioxaphosphorinanes. Low ΔG°_{CT} values seem to be associated with six-membered rings containing lengthened bonds, for example, C–S, P–O, and P–N. Increased bond lengths induce ring flattening and reduced cross-ring steric and torsional repulsions in the twist conformation. One presumes that this is true for the 2-oxo-1,3,2-oxazaphosphorinanes as well. The reason for the apparent population for cis-7 of no other twist conformations except 14 is not known. Nonetheless, the R₂N and NPh are moved further away from each other in 14 than in the other twist conformation directly formed from the boat with C(4) and P(2) in bowspirit positions.

It must emphasized that one refers in these discussions to chair \rightarrow twist interconversions which correspond to $19 \rightarrow 20$ (Z equatorial or pseudoequatorial) and not to those in which Z is pseudoaxial in the twist conformation. The latter should show

a strong dependence of ΔG°_{CT} on the steric size of Z. This

⁽²³⁾ Majoral, J.-P.; Bergounhou, C.; Navech, J. Bull. Soc. Chim. Fr. 1973, 3146.

⁽²⁴⁾ Squillacote, M.; Sheridan, R. S.; Chapman, O. L.; Anet, F. A. L. J. Am. Chem. Soc. 1975, 97, 3244.

⁽²⁵⁾ Clay, R. M.; Kellie, G. M.; Riddell, F. G. J. Am. Chem. Soc. 1973, 95, 4632.

⁽²⁶⁾ Bentrude, W. G.; Tan, H. W. J. Am. Chem. Soc. 1973, 95, 4666.
Bentrude, W. G.; Yee, K. C. J. Chem. Soc., Chem. Commun. 1972, 169.
(27) Maryanoff, B. E.; McPhail, A. T.; Hutchins, R. O. J. Am. Chem. Soc. 1981, 103, 4432.

probably is the reason that the trans diastereomers of both 6 and 7 remain totally in the chair conformation with t-Bu and R_2N equatorial even though the Me_2N has a small preference for the axial position.

Solvent Effects on Equilibria (9 \rightleftharpoons 10). The effect of solvent change on the $9 \rightleftharpoons 10$ equilibrium for 1-4 is especially interesting in that the change from C₆D₆ to more polar solvents such as CDCl₃, acetone, or even C_6D_6/Me_2SO-d_6 or C_6D_6/CD_3CN does not increase the population of the more polar conformation 9 as is common for 2-oxo-1,3,2-dioxaphosphorinanes.³ In fact CDCl₃ and acetone- d_6 favor 10, as does dilution in C_6D_6 or CDCl₃. Both of these effects probably reflect decreased intermolecular hydrogen bonding (Results section) which dominates solute-solvent interactions. Indeed, H bonding seems to be a secondary effect overridden by the steric and electronic effects of R₂N on conformation in all 1-4. By contrast 5, with Ph in place of hydrogen on the ring nitrogen, shows a response to increased solvent polarity consistent with the more favorable solvent-solute dipole-dipole interactions expected of conformation 9 which would have a larger dipole moment than 10.

The 9 = 10 equilibrium for CPA itself (8) is much more susceptible to solvent changes than are those for 1-3 or even 4 to which it is most similar. The effect of water is especially notable. As shown in Tables II and IV, for 8 the percentage of the more stable conformer populated (10) ranges from 58 to 82. Local medium effects, e.g., those of enzymes, could be expected to be able to easily perturb the CPA conformational equilibrium in the manner most advantageous to the system whether it be oxidative activation, ring opening of the 4-hydroxy derivative, or transport.

P=O IR Frequencies and Ring Conformation. It should be emphasized that our results show that the use of P=O IR stretching frequencies to assign axial or equatorial phosphoryl oxygen orientation should be considered risky at best. Not only must the substituents Z on phosphorus be very similar (e.g., 1-3) but no change in substituent on ring nitrogen is allowable. Even then, at least when two conformations are present, the relative intensities of the bands may not be that predicted by conformation population. In certain media the proper number of bands may not be seen. As demonstrated by cis- and trans-7, differently oriented P=O groups occasionally may have the same frequency. As suggested elsewhere, H bonding between molecules may complicate the IR picture where ring NH is present.

Experimental Section

Methods and Materials. Analyses were carried out by Atlantic Microlab, Inc., Atlanta, GA, and Galbraith Laboratories, Inc., Knoxville, TN. Melting points are uncorrected. Infrared spectra were obtained on a Perkin-Elmer 298 spectrophotometer. 1H NMR spectra were taken on a Varian SC 300 spectrometer, operated in the FT mode, or on a Varian EM 390 CW instrument. Coupling constants were measured at 300 MHz on 100 Hz SW expansions, 32K data base, 5.459-s acquisition times, and are probably accurate to ± 0.2 Hz. ^{31}P NMR spectra were made at 32.2 MHz on a Varian FT-80A spectrometer under proton noise decoupling conditions. Positive ^{31}P chemical shifts are in δ parts per million downfield from external 85% H_3PO_4 . The mass spectrometer used was a VG Micromass 7070 double-focusing high-resolution instrument with VG Data System 2000 operated in the EI mode using direct inlet sampling. FT-IR work was done on a Nicolet 7199 instrument.

(Bis(2-chloroethyl)amido)phosphoryl Dichloride was prepared by the procedure of White, Gibbs, and Verkade. Me₂NP(O)Cl₂, Et₂NP(O)Cl₂ and i-Pr₂P(O)Cl₂ were all made according to Walsh and Toy for Me₂NP(O)Cl₂²⁸ and characterized by ¹H and ³¹P NMR. Preparations of amino alcohols HOCH₂C(CH₃)₂CH₂NH₂ and 3 were reported earlier. The corresponding N-phenyl compound, HOCH₂C-(CH₃)₂CH₂NHPh, 9, was prepared in parallel fashion except that EtO₂CC(CH₃)₂COCl (0.515 mol in 500 mL of Et₂O) was reacted with PhNH₂ (117 g, 1.25 mol in 100 mL of Et₂O), added slowly at room temperature, rather than with NH₃. The reaction mixture was filtered and washed with successive 150-mL portions of H₂O, 10% HCl, H₂O, 10% NH₃, H₂O, and saturated NaCl. The organic layer was dried over MgSO₄; the ether was removed and the residue recrystallized from ether/pentane to give N-phenyl-2-carboethoxy-2-methylpropionamide, a

colorless solid: mp 48-49 °C; (1 H NMR CDCl₃), δ 1.30 (3 H, t, CH₃CH₂O), 1.58 (6 H, s, Me₂C), 4.26 (2 H, q, CH₃CH₂O), 7.02-7.59 (5 H, m, C₆H₅), 8.64 (1 H, broad s, NH); IR (KBr) 3250, 2980, 1730, 1660, 1600, 1550, 1495, 1445, 1390, 1324, 1310, 1270 (s, P=O), 1175, 1142, 760 cm⁻¹. Anal. Calcd for C₁₃H₁₇NO₃: C, 66.36; H, 7.29; N, 5.95. found: C, 66.44; H, 7.38; N, 5.97. A solution of this amide (4.71 g, 20.0 mmol) in 50 mL of Et₂O was added slowly to a rapidly stirred suspension of LiAlH₄ (1.75 g, 46.0 mmol) in 50 mL of Et₂O. After a 3-day reflux, the mixture was cooled to 0 °C and quenched with a mixture of Et₂O (100 mL) and H₂O (3.8 mL, 212 mmol). This mixture was stirred at room temperature for 1 h; MgSO₄ was added and stirring continued for 15 min. Filtration and washing of the solids with Et₂O (4 times), removal of the Et₂O, and bulb-to-bulb Kugelrohr distillation, bp 108-110 °C (0.25 mm), gave 3.50 g (98% yield) of a colorless liquid, 9: IR (film) 3550, 3390, 3150, 3120, 2930, 2870, 1602, 1508, 1473, 1390, 1366, 1323, 1257, 1181, 1157, 1100, 1042, 994, 750, 697 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (6 H, s, Me₂C), 3.01 (2 H, s, CH₂OH), 3.44 (2 H, s, CH_2NH), 3.61 (2 H, s, NH and OH), 6.74–7.44 (5 H, m, C_6H_5). Anal. Calcd for C₁₁H₁₇NO: C, 73.70; H, 9.56. Found: C, 73.70; H, 9.61.

2-(Diethylamino)-2-oxo-5,5-dimethyl-1,3,2-oxazaphosphorinane, 2. A solution of (diethylamido) phosphoryl dichloride (2.45 g, 12.9 mmol) in anhydrous ethyl acetate (50 mL) was added slowly to a rapidly stirred solution of 2-(hydroxymethyl)-2-methylpropylamine (1.33 g, 12.9 mmol) and anhydrous triethylamine (3.60 mL, 2.61 g, 25.8 mmol) in anhydrous ethyl acetate (100 mL), cooled to 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 2 days. The triethylamine hydrochloride was filtered off and the solvents removed from the filtrate to give 3.00 g of a pale yellow oil. A 1.50-g sample of the crude product so obtained was chromatographed by MPLC on silica gel, eluting with EtOAc/EtOH (9:1) to give 760 mg (62.2% yield) of 5 as a clear colorless oil: $^{'31}P$ NMR (CDCl₃) δ 13.61; IR (thin film) 3220 (s, br, N-H), 2965, 2935, 2875, 1466, 1382, 1220 (s, P=O), 1199 (s, P=O), 1090, 1035, 1000, 951, 801, 784 cm⁻¹; MS (EI), m/e 220 (M⁺, 14%), 205 (89%), 165 (19%), 149 (22%) 148 (15%), 122 (10%), 84 (27%), 72 (100%), 69 (14%), 60 (13%), 58 (66%), 56 (12%), 55 (12%), 45 (14%), 44 (21%), 43 (33%), 42 (14%), 41 (24%), 30 (60%), 29 (21%), 28 (30%), 27 (14%); high-resolution MS, m/e (M⁺) calcd for $C_9H_{21}N_2O_2P$ 220.1340, found 220.1322.

2-(Diisopropylamino)-2-oxo-5,5-dimethyl-1,3,2-oxazaphosphorinane, 3. A solution of (diisopropylamido) phosphoryl dichloride (2.96 g, 14.6 mmol) in anhydrous ethyl acetate (25 mL) was added slowly to a rapidly stirred solution of 2-(hydroxymethyl)-2-methylpropylamine (1.40 g, 13.6 mmol) and anhydrous triethylamine (3.78 mL, 2.75 g, 27.1 mmol) in anhydrous ethyl acetate (100 mL), cooled to 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 6 days. The triethylamine hydrochloride was filtered off and the solvents removed from the filtrate to give 3.94 g of residual yellow oil. A 3.00-g sample of the crude product was purified by MPLC on silica gel, eluting with EtOAc/EtOH (9:1), to give 1.97 g (76.6% yield) of 2-(disopropylamino)-2-oxo-5,5-dimethyl-1,3,2-oxazaphosphorinane as a colorless crystalline solid, a sample of which was recrystallized from EtOAc hexane for analysis: mp 111-113 °C; ^{31}P NMR (CDCl₃), δ 13.46; IR (KBr) 3145 (s, br, N-H), 2957, 2870, 1470, 1411, 1367, 1327, 1216 (s, P=O), 1203 (s, P=O), 1159, 1134, 1086, 1040, 1033, 1013, 990, 948, 784, 673 cm⁻¹; mass spectrum, m/e 248 (M⁺, 8%), 234 (11%), 233 (100%), 205 (24%), 191 (86%), 135 (15%), 86 (14%), 84 (17%), 69 (16%), 58 (18%), 57 (10%), 56 (16%), 55 (17%), 44 (40%), 43 (31%), 42 (24%), 41 (43%), 40 (41%), 39 (12%). Anal. $C_{11}H_{25}N_2O_2P$: C, 53.21; H, 10.15; P, 12.47. Found: C, 53.30; H, 10.19;

2-(Bis-(2-chloroethyl)amino)-2-oxo-5,5-dimethyl-1,3,2-oxazaphosphorinane, 4. A solution of (bis(2-chloroethyl)amido phosphoryl dichloride (12.1 g, 46.7 mmol) in anhydrous ethyl acetate (100 mL) was added slowly to a rapidly stirred solution of 2-(hydroxymethyl)-2methylpropylamine⁸ (4.82 g, 46.7 mmol) and anhydrous triethylamine (13.0 mL, 9.45 g, 93.4 mmol) in anhydrous ethyl acetate, cooled to 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 3 days. The triethylamine hydrochloride was filtered off and the solvents removed from the filtrate to give 14.7 g of the crude product as a pale yellow oil. A 500-mg sample of this product was chromatographed on silica gel, eluting with EtOH/EtOAc (1:9), to give 350 mg $\,$ (76% yield) of 4 as a colorless crystalline solid. A sample was recrystallized from ethyl acetate/pentane: mp 90-91 °C; ¹H NMR (90 MHz; CDCl₃) δ 0.75 (s, 3 H, CCH₃), 0.80 (s, 3 H, CCH₃), 2.4-3.2 (m, 2 H, ring CH₂N), 3.2–3.5 (m, 8 H, NCH₂CH₂Cl), 3.4–4.1 (m, 3 H, ring CH₂O, NH); 31 P NMR (CDCl₃) δ 12.92; IR (KBr) 3220 (NH), 2965, 2890, 1465, 1390, 1355, 1333, 1253, 1230 (P=O), 1218 (P=O), 1204, 1139, 1106, 1086, 1036, 1010, 986, 950, 930, 862, 833, 794, 785, 750, 740, 614 cm⁻¹; mass spectrum, m/e 288 (M⁺, not observed), 241 (32%) 239 (100%), 148 (M - N (CH₂CH₂Cl)₂, 35%) 92 (23%); 84 (37%), 56

(21%), 41 (23%), 30 (51%). Anal. Calcd. for $C_9H_{19}N_2O_2PCl_2$: C, 37.39; H, 6.62; N, 9.69; P, 10.71; Cl, 24.52. Found: C, 37.38; H, 6.65; N, 9.64; P, 10.96; Cl, 24.44.

2-(Dimethylamino)-2-oxo-3-phenyl-5,5-dimethyl-1,3,2-oxazaphosphorinane, 5. A mixture of N-phenyl-2-(hydroxymethyl)-2-methylpropylamine¹⁴ (16.3 g, 91.1 mmol) and hexamethylphosphorous triamide (19.5 mL, 17.5 g, 91.1 mmol) in a solution of ethyl acetate (100 mL) and toluene (100 mL) was refluxed for 18 h. The solvents were removed in vacuo, and the residual liquid was dissolved in dichloromethane (250 mL). The reaction mixture was cooled to -20 °C, and the material was oxidized by dropwise addition of a saturated solution of N₂O₄ in CH₂Cl₂. The reaction mixture was warmed to room temperature and the solvent removed in vacuo, leaving a thick brown oil (41.7 g). A 5.75-g sample of the oil was chromatographed on a 20 × 700 mm column of silica gel (Baker, 60-200 mesh, 90 g), eluting with ethyl acetate/hexane (1:1). The first 700 mL of eluent was discarded and the next 400 mL collected. Removal of the solvent by rotary evaporation gave 2.48 g (73.6% yield) of 2-(dimethylamino)-2-oxo-3-phenyl-5,5-dimethyl-1,3,2-oxazaphosphorinane (5) as a pale yellow crystalline solid. A small sample of the compound was Kugelrohr distilled from bulb to bulb with an air bath temperature of 120 °C at 0.20 torr and then recrystallized from diethyl ether/pentane to give analytically pure product: mp 60-61 °C; ¹H NMR (90 MHz, CDCl₃) δ 1.00 (s, 3 H, CCH₃), 1.32 (s, 3 H, CCH₃), 2.63 (d, 6 H, NCH₃, J_{HP} = 10.2 Hz), 3.05–4.50 (m, 4 H, CH₂N, CH₂O), 7.3–7.7 (m, 5 H, C₆H₅); ³¹P NMR (CD₃COCD₃) δ 8.28; IR (KBr) 2960, 2890, 2845, 2800, 1600, 1500, 1490, 1480, 1305, 1261 (s, P=O), 1230 (s, P=O), 1207, 1190, 1123, 1110, 1080, 1058, 1042, 994, 900, 810, 793, 757, 740, 696 cm⁻¹; mass spectrum, m/e 268 (48%, M⁺), 213 (81%), 106 (100%), 105 (99%), 104 (29%), 77 (31%), 69 (25%). Anal. Calcd. for C₁₃H₂₁N₂O₂P: C, 58.20; H, 7.89; P, 11.54. Found: C, 58.14; H, 7.95;

2-(Diisopropylamino)-2-oxo-5-*tert***-butyl-1,3,2-oxazaphosphorinanes, 6.** A solution of (diisopropylamido)phosphoryl dichloride (6.20 g, 28.4 mmol) in anhydrous ethyl acetate (50 mL) was added slowly to a rapidly stirred solution of 2-(hydroxymethyl)-3,3-dimethylbutylamine (3.73 g, 28.4 mmol) and anhydrous triethylamine (7.92 mL, 5.75 g, 56.9 mmol)

in anhydrous ethyl acetate (200 mL), cooled to 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 4 days. The triethylamine hydrochloride was filtered off and the solvents removed from the filtrate to give 8.24 g of a residual yellow solid. A 400-mg sample of this crude product was chromatographed by MPLC on silica gel, eluting with EtOAc/EtOH (9:1) to give 140 mg of pure trans-2-(diisopropylamino)-2-oxo-5-tert-butyl-1,3,2-oxazaphosphorinane (6) as a colorless crystalline solid which was recrystallized from Et₂O/pentane: mp 141 °C; ³¹P NMR (CDCl₃) δ 13.70; IR (KBr), 3270 (s, b, NH), 2962, 2888, 1408, 1364, 1217 (sh), 1202 (s, P=O), 1158, 1130, 1088, 1037, 1030, 1014, 991, 840, 799, 774 cm⁻¹. Anal. Calcd. for C₁₃H₂₉N₂O₂P: C, 56.50; H, 10.58; P, 11.21. Found: 56.48; H, 10.61; P, 11.35; MS, (EI) m/e 276 M⁺ (5.0%), 262 (13%), 261 (100%), 233 (25%), 219 (70%), 135 (28%), 94 (13%), 86 (18%), 69 (11%). In addition 40 mg of the cis diastereomer was obtained and recrystallized from pentane: mp 80–82 °C; ³¹P NMR (CDCl₃) δ 11.52; IR (KBr) 3210 (s, br, NH), 2920, 2870, 1404, 1367, 1249, 1214 (P=O), 1193 (sh), 1160, 1110, 1034, 1000, 968, cm⁻¹; mass spectrum, m/e 276 (M⁺, 4%), 262 (14%), 261 (100%), 233 (23%), 219 (74%), 135 (29%), 94 (13%), 86 (19%), 69 (27%). Anal. Calcd. for $C_{13}H_{29}N_2O_2P$: C, 56.50; H, 10.58; P, 11.21. Found: C, 56.49; H, 10.54; P, 11.29. A further 160 mg of a pure mixture of diastereomers also was isolated, total 340 mg (89%

Acknowledgment. Support of this research by the National Cancer Institute of the Public Health Service (Grant CA 11045) is gratefully acknowledged.

Registry No. 1, 88946-46-7; 2, 94843-98-8; 3, 94843-99-9; 4, 22089-27-6; 5, 94844-00-5; trans-6, 94859-54-8; cis-6, 94844-01-6; 8, 50-18-0; 9, 94844-02-7; $Et_2NP(O)Cl_2$, 1498-54-0; i- $Pr_2P(O)Cl_2$, 23306-80-1; $EtO_2CC(CH_3)_2COCl$, 64244-87-7; $PhNH_2$, 62-53-3; 2-(hydroxymethyl)-2-methylpropylamine, 76733-32-9; (bis(2-chloroethyl)amido, phosphoryl dichloride, 127-88-8; hexamethylphosphorus triamide, 680-31-9; 2-(hydroxymethyl)-3,3-dimethylbutylamine, 15521-17-2; N-phenyl-2-carboethoxy-2-methylpropionamide, 7507-43-9.

Ion Pairing and Reactivity of Enolate Anions. 6. Kinetics and Thermodynamics for Reaction of Alkali Acetylacetonates with Alkyl Halides in Dimethyl Sulfoxide

Edward M. Arnett,* Stephen G. Maroldo, George W. Schriver, Steven L. Schilling, and E. B. Troughton

Contribution from the Department of Chemistry, Duke University, Durham, North Carolina 27706. Received October 8, 1984

Abstract: Rates and heats of reaction are reported for the C-alkylation of alkali salts of various symmetrical β -diketones with methyl and ethyl iodide in dimethyl sulfoxide (Me₂SO). Product analysis by FT-NMR established that the reactions were clean over the concentration range of the kinetic and thermochemical study and, with only one exception, gave 100% carbon alkylation within the limits of detection. The effects of ion pairing, temperature, and alkylating agent were probed to yield an extensive comparison of the effects of structural change on the kinetics of alkylation with methyl or ethyl iodide. The formation of 3-methyl-3-ethylacetylacetone by alternative routes (methylation of potassium 3-ethylacetylacetonate and ethylation of potassium 3-methylacetylacetonate) allows an unprecedented comparison of the energetics of each step along the reaction profile from isomeric reactants in the gas phase, through isomeric transition states, to a common product in Me₂SO solution.

From a pragmatic viewpoint, alkali enolates are probably the most important type of synthetic intermediate since they are involved in the many useful base-promoted alkylation and acylation reactions of carbonyl compounds. However, relatively few systematic physicoorganic studies have been aimed at elucidating the factors which control the rates or product distribution in these important reactions. From what has been done so far, it is clear that practically every variable in the system can influence the

outcome. In recent years the sensitivity of many enolate reactions to the choice of alkali counterion has become appreciated and attributed to ion pairing. The notion that dissociated (i.e., "naked") anions are more reactive than those which are paired to alkali cations is attractive and has inspired the use of various strategies such as the use of dipolar nonhydroxylic solvents, polybasic cation ligands, and phase-transfer catalysis to help dissociate the ion pairs. Several excellent recent reviews have organized the literature that